Local Discriminant Wavelet Packet Coordinates for Face Recognition
نویسندگان
چکیده
Face recognition is a challenging problem due to variations in pose, illumination, and expression. Techniques that can provide effective feature representation with enhanced discriminability are crucial. Wavelets have played an important role in image processing for its ability to capture localized spatial-frequency information of images. In this paper, we propose a novel local discriminant coordinates method based on wavelet packet for face recognition to compensate for these variations. Traditional wavelet-based methods for face recognition select or operate on the most discriminant subband, and neglect the scattered characteristic of discriminant features. The proposed method selects the most discriminant coordinates uniformly from all spatial frequency subbands to overcome the deficiency of traditional wavelet-based methods. To measure the discriminability of coordinates, a new dilation invariant entropy and a maximum a posterior logistic model are put forward. Moreover, a new triangle square ratio criterion is used to improve classification using the Euclidean distance and the cosine criterion. Experimental results show that the proposed method is robust for face recognition under variations in illumination, pose and expression.
منابع مشابه
Discriminant feature extraction using empirical probability density estimation and a local basis library
The authors previously developed the so-called local discriminant basis (LDB) method for signal and image classi3cation problems. The original LDB method relies on di4erences in the time–frequency energy distribution of each class: it selects the subspaces where these energy distributions are well separated by some measure such as the Kullback–Leibler divergence. Through our experience and expe...
متن کاملApplication of Wavelet Packet Transform in Pattern Recognition of Near-IR Data
The wavelet packet transform is studied as a tool for improving pattern recognition based on near-infrared spectra. Application to the preprocessing of the spectra improves the classification when compared to using either the standard normal variate method or no pretreatment at all. Selecting features from a local discriminant basis instead of from a full decomposition does not improve the resu...
متن کاملLocal Curvelet Based Classification Using Linear Discriminant Analysis for Face Recognition
In this paper, an efficient local appearance feature extraction method based the multi-resolution Curvelet transform is proposed in order to further enhance the performance of the well known Linear Discriminant Analysis(LDA) method when applied to face recognition. Each face is described by a subset of band filtered images containing block-based Curvelet coefficients. These coefficients charact...
متن کاملLand use classification of SAR images using a type II local discriminant basis for preprocessing
In this paper, we present the application of the Type II Local Discriminant Basis (LDB) technique to feature extraction for land use classification in Synthetic Aperture Radar (SAR) images. Our classification algorithm incorporates spatial information into the decision process by classifying small image blocks, instead of single pixels. A feature vector composed of all the values in the image b...
متن کاملFace recognition using a novel image representation scheme and multi-scale local features
This paper presents a new method for improving face recognition performance under difficult conditions. Specifically, a new image representation scheme is proposed which is derived from the YCrQ colour space using principal component analysis (PCA) followed by Fisher linear discriminant analysis (FLDA). A multi-scale local feature, LBP-DWT, is used for face representation which is computed by e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of Machine Learning Research
دوره 8 شماره
صفحات -
تاریخ انتشار 2007